[이달의 연구자] 조준형 교수(물리학과)
나노구조 파악 방법을 통합한 이론 제시
물리학에서 세상은 '거시세계'와 '미시세계'로 나뉜다. 거시세계는 우리가 흔히 눈으로 볼 수 있는 세계를 말하며, 미시세계는 눈에 보이지 않는 매우 작은 세계를 말한다. 문제는 미시세계의 물질들이 거시세계와 다른 성질을 보이기 때문에, 나노구조(Nanostructure)에 대한 연구가 매우 어렵다는 점이다. 지금까지 나노구조에 대한 연구는 매번 개별적으로 진행됐다. 하지만 그간의 연구 결과를 통합할 필요가 있었고, 조준형 교수(물리학과)와 연구진이 지난 30년 동안 쌓인 연구 결과를 통합하는 이론을 제시했다.
축적된 연구 통합하는 이론 제시
“새로운 퍼즐 조각을 발견하는 것도 의미있는 일이지만, 오랫동안 쌓인 퍼즐조각들로 하나의 그림을 만드는 것도 굉장히 중요하다." 지난 30년 동안 나노구조의 일종인 나노선(Nano wires, 원자가 1차원 선 모양으로 나열된 것)과 나노필름(Nano films, 원자가 2차원 면 모양으로 펼쳐진 것)의 형성에 대한 연구는 무수히 많았다. 하지만 대부분 금속의 종류에 따라, 나노선과 나노필름마다 따로 연구가 진행돼 일반적인 경향을 찾기 어려웠다. “30여년 동안 진행된 수많은 실험 및 이론 연구들이 흩어져 있는데, 이를 통합시킬 이론이 필요해 연구를 시작했습니다.” 조준형 교수의 연구팀이 이런 연구를 시작한 이유다. 기존에 반도체 표면 위 다양한 1, 2차원 나노구조에 대한 연구를 수행했던 것이 유용했다.
나노구조를 이해하려면 우선 미시세계에 대한 이해가 필요하다. 거시세계의 경우, 자연계열 학생이라면 고등학교 때부터 배우는 ‘뉴턴 역학’을 바탕으로 물리 현상을 설명한다. “하지만 미시세계, 특히 이번에 연구한 나노미터 크기(원자, 분자 크기) 수준에서 나타나는 현상은 뉴턴 역학으로 설명할 수 없는 경우가 대부분입니다. 또 이 현상들은 우리의 직관과는 맞지 않는 경우가 많습니다. 이는 ‘양자 역학’이라는 새로운 방법을 통해 설명하게 됩니다.”
일반적으로 에너지의 크기나 파장이 변하는건 연속적으로 생각한다. 가령, 소리의 크기나 호수의 물결, 불의 세기와 같은 것이 변하는 것을 이어진 그래프로 나타낸다. “미시세계에서는 다릅니다. 에너지의 크기나 파장이 변할 때 띄엄띄엄 변하며, 이를 양자화 돼있다고 합니다. 이번 연구에서 다룬 나노선과 나노필름 또한 무조건 하나로 결정되는 것이 아니라 특정한 선호하는 길이 또는 두께로 형성되는 것입니다.”
밀도범함수를 통해 본다
이번 연구에서 쓰인 주된 이론은 ‘밀도범함수 이론’이다. 양자역학에 기초해 물질의 전자구조와 물성을 계산할 수 있는 방법이다. 물질의 전자가 가질 수 있는 분포와 전자기적, 광학적 성질 등을 알 수 있다는 것. “최근 컴퓨터의 발달에 힘입어 다양한 물질계에 적용되고 있는 이론입니다. 1998년에는 노벨 화학상을 받기도 했었죠.” 이 이론을 활용하면, 기존의 복잡했던 슈뢰딩거 방정식을 이용하지 않고도 필요한 정보를 얻을 수 있다. 또 최근에는 양자역학 이외의 분야에서도 쓰이기도. “우리 연구실에선 밀도범함수 이론을 이용해 물질의 에너지, 전자상태 및 에너지준위, 전 밀도와 같은 물리량들을 계산했습니다.”
나노구조를 파악한 방법 또한 흥미롭다. 여기에는 ‘결함’(Defect)이라는 개념이 중요하다. “고체에는 원자들이 주기적으로 배치돼 있어요. 어느 지점에서 이러한 주기성이 깨지는데, 물리학에선 이를 ‘결정결함’(crystallographic defect)이라고 합니다. 한 개의 원자가 있어야 할 위치에 없는 경우를 ‘점결함’(point defect), 여러 원자가 면 모양으로 없는 경우를 ‘면결함’(planar defect)라 부르는 식이죠.” 이번 연구에서 파악한 나노구조들 또한 결함을 이용해 파악했다. “특정 길이를 갖는 나노선은 무한정 긴 1차원 원자선 어딘가에서 점결함이 생긴 것으로, 특정 두께를 갖는 나노필름은 무한정으로 큰 3차원 물질의 어느 두께부터 면결함이 생긴 것으로 볼 수 있습니다.”
프리델 진동 통해 파악해
이 결함을 찾는데 사용된 것이 바로 ‘프리델 진동’(Friedel oscillation)이다. “앞서 말했던 것처럼 특정 길이나 두께를 갖는 물체는 무한정 크거나 긴 물체에 결함이 생긴 것으로 바꿔 생각할 수 있습니다. 이때 고체 안의 전자들이 결함과 상호작용하며 전자밀도파(파동의 일종)를 형성하고, 이를 프리델 진동이라 합니다.” 잔잔한 호수에 돌멩이를 던지면 물결이 생기듯, 주기적인 배열에 결함이 생기면서 진동이 발생하는 것이다. “나노선의 길이는 프리델 진동의 파장과 일치할 때, 에너지가 안정됩니다. 이때 프리델 진동의 주기(그리고 파장)은 나노구조의 성분 및 직경에 따라 결정됩니다.” 이 주기에 따라, 각각의 나노선과 나노필름의 길이와 두께가 선호되는 것이다.

주기율표에서 1열과 11열에 존재하는 나트륨, 금, 은 등은 직경이 커질수록 주기가 증가하고, 그 외의 금속들은 감소하게 됨을 알 수 있다. (출처: 조준형 교수)
이 주기에 따라, 각각의 나노선과 나노필름의 선호하는 길이와 두께가 결정되며 이를 ‘매직 렝쓰’(Magic length)라 한다. “나노선의 경우 리튬, 나트륨과 같은 알칼리 금속과 금,은이 포함된 주기율표 11번째 열의 금속들은 직경이 커질수록 매직 렝쓰가 나타나는 주기가 길어집니다. 반대로 주기율표 11번째 열을 제외한 3열부터 15열까지의 금속원소들은 직경이 커질수록 매직 렝쓰가 나타나는 주기가 짧아짐을 발견했습니다.” 한가지 주목할 점은 나노선의 직경이 커지다 보면 어느 순간 나노필름과 같아진다는 점이다. “이는 곧 나노선이 충분히 두꺼워지면 이는 나노필름의 두께를 따지듯 할 수 있다는 것입니다.”

“과학은 경험과 소통을 통해 발전한다”
현재 조 교수는 중국에서 연구년을 보내고 있다. 이번 연구는 중국과학기술대학(USTC) 및 정저우대학(Zhengzhou University) 연구팀과 공동연구로 진행했으며, 우리대학에서는 조 교수가 교신저자, 이세호(물리학과 박사과정) 씨가 제2저자로 참가했다. 조 교수는 연구로 바쁜 와중에도 우리대학 학생들과 지속적으로 소통한다고. “비록 몸은 타지에 있지만 수시로 학생들과 연락합니다.” 주로 화상보고나 이메일을 통해 연구 진행 상황을 보고받고 있다. “많은 경험과 소통을 통해, 과학이 발전할 수 있다고 생각합니다. 지속적으로 연구 진행 상황을 보고 받는 것도 그 때문이죠.”
한편 조 교수는 이 연구 이후로도 지속적으로 나노구조물에 대해 연구를 진행하고 있다. “현재 우리 연구실에서는 나노 분야 뿐만 아니라 표면 분야, 토폴로지 분야를 융합시켜 연구하려 합니다. 즉 나노구조물이 고체 표면에 형성될 때 나타날 수 있는 새로운 상태를 발견하고, 여러 상태들 간에 나타나는 현상에 많은 관심을 가지고 있습니다.” 조 교수의 연구분야인 물리학, 특히 나노구조는 일반인에겐 무척 낯선 분야다. 그러나 이는 기초과학으로서 이후 공학의 발전과 기술의 발전에 큰 기여를 할 수 있으며, 궁극적으로 우리 삶에 많은 변화를 불러일으킬 수 있다. 조 교수의 향후 연구에 더더욱 눈길이 가는 이유다.
이상호 기자 ta4tsg@hanyang.ac.kr